If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(3w+7)=150
We move all terms to the left:
w(3w+7)-(150)=0
We multiply parentheses
3w^2+7w-150=0
a = 3; b = 7; c = -150;
Δ = b2-4ac
Δ = 72-4·3·(-150)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-43}{2*3}=\frac{-50}{6} =-8+1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+43}{2*3}=\frac{36}{6} =6 $
| 310+5x=360 | | 7c=6c+11 | | 302+2x=360 | | 2x+2/16=O | | 3(4x-1)+7x=17 | | 4.9t^2+30.5t+32=0 | | 3+4x-1)+7x=17 | | -7x-60=0 | | 6=1/2w | | 35=12+m | | 8x-51=0 | | 2x+4(21)=160 | | 8x+30=30° | | 3240=x/2(2x+(x-1)-1) | | 3(x+5)+2x=10x-5(x+1) | | 3(80+2y)+y=90 | | x-5+x=61 | | 13x+2-17=11 | | 5x=12=36 | | 3(x^2+3)=4(2x+3) | | -3x+16+,5x=8 | | 2(n-8)=14n-16 | | 9x^2-48x+10=0 | | 9n-(3n-1)=2 | | -1+5x+9.7=12.7 | | 2k/5=9/15 | | 7^9x=18 | | 0.95x+0.99(16-x)=15.52 | | 1/4n-5=1 | | x3-2=-10 | | -8n+8+6n=-3n+13 | | 3x+7=4/3-2x |