If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(4w-7)=795
We move all terms to the left:
w(4w-7)-(795)=0
We multiply parentheses
4w^2-7w-795=0
a = 4; b = -7; c = -795;
Δ = b2-4ac
Δ = -72-4·4·(-795)
Δ = 12769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12769}=113$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-113}{2*4}=\frac{-106}{8} =-13+1/4 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+113}{2*4}=\frac{120}{8} =15 $
| a-27=-41 | | 29=7v+5(v+7) | | 2x^2-5=3x^2-12x+32 | | 15x+23(x-3)=463 | | t-(-3)=-10 | | y-14=-66 | | 15x+12(x-3)=463 | | 77/3x=5 | | 7x-12=x2^ | | t-4.3=-12.8 | | 2x=15-x2^ | | .50x+.45(50)=46.5 | | 2x^2-x-8=12-4x | | r+(-4)=2 | | 25x2^=20x-4 | | x2^+9=4x | | y-(-51)=99 | | 2x2^=-12x-18 | | x2^=x+12 | | -0.1x^2+40x-80=0 | | 4x2^+9=12x | | 29x(-986=0 | | 29x(-986)=0 | | 2x2^-7x=15 | | 3x2^-7x+2=0 | | x+(x+374)=10992 | | 3=(6+2x) | | 5x+13=7x-4 | | 6x2^+x-1=0 | | 1224=36x+36 | | 24=v/3+14 | | -x2^+6x-5=0 |