If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(w+4)=320
We move all terms to the left:
w(w+4)-(320)=0
We multiply parentheses
w^2+4w-320=0
a = 1; b = 4; c = -320;
Δ = b2-4ac
Δ = 42-4·1·(-320)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-36}{2*1}=\frac{-40}{2} =-20 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+36}{2*1}=\frac{32}{2} =16 $
| -8u-17=-3(u+9) | | -16.69-4.6f-15.16=-0.3f+12.87 | | 28=-6v+2(v+4) | | 6x+30-5x=35 | | 20-15v=-16v | | 19q+18=-18+17q | | 7n-8=-8+12n-7n | | 99=3(-4x+1) | | 15=0.5+3/2x+10 | | (12-7/2y)/((7/8y)-3)=0 | | 7x-2=-2x-24 | | 4f+8=8f+2 | | -480+30t^2=-400 | | 3x-4-5x=x+4 | | 16-t^2=4/3 | | 480-30t^2=400 | | -5-6n+6=19 | | (1/3)x+3=15 | | 9c+10=2c-9-9 | | -9+5p-10=10p+6 | | -7f-10=10-9f | | 210t+68=56t+1164 | | -9+3n=-10n+4 | | x+.2x=450 | | 210t-68=56t-1164 | | 5v−1=4v−9 | | 7g-8=5g | | 25x+62=4 | | 2(n-5)+2n=38 | | 0.002(1-x)+0.01(x-3)=1 | | 0.05(2)^n=0 | | 180=110+2x+5x |