If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(w+41/4)=1241/2
We move all terms to the left:
w(w+41/4)-(1241/2)=0
We add all the numbers together, and all the variables
w(+w+41/4)-(+1241/2)=0
We multiply parentheses
w^2+41w^2-(+1241/2)=0
We get rid of parentheses
w^2+41w^2-1241/2=0
We multiply all the terms by the denominator
w^2*2+41w^2*2-1241=0
Wy multiply elements
2w^2+82w^2-1241=0
We add all the numbers together, and all the variables
84w^2-1241=0
a = 84; b = 0; c = -1241;
Δ = b2-4ac
Δ = 02-4·84·(-1241)
Δ = 416976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416976}=\sqrt{16*26061}=\sqrt{16}*\sqrt{26061}=4\sqrt{26061}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{26061}}{2*84}=\frac{0-4\sqrt{26061}}{168} =-\frac{4\sqrt{26061}}{168} =-\frac{\sqrt{26061}}{42} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{26061}}{2*84}=\frac{0+4\sqrt{26061}}{168} =\frac{4\sqrt{26061}}{168} =\frac{\sqrt{26061}}{42} $
| 15y-9=12y+12 | | x-3/4=81/3 | | 2.5*x+6=6x-3 | | 3(x+2)-x=2(x-1 | | -23=5y-3 | | 3*(x-5)=60 | | -6-5x=2x-6 | | x5+4=6 | | 10y+3y=18 | | 4y=8=2y+5=0 | | 3x-6=4.5 | | x/6=3x/6 | | 103-v=203 | | 4=v+8 | | 5y+1.8=4y+3.2 | | 12j-11j=11 | | 1.7p=2.28 | | 5y+1.8=4y | | 20x+(−4)=−7 | | 5n+9=6n+4 | | 3x+13=4x-7 | | 3x-2/5=11 | | -150-m=620 | | 5x-5+x=9 | | 56=u/4+49 | | .75t+7=16.5t+14 | | 14+27h=35+20h | | -3(v+59)=-30 | | 2v=21-v | | 6(q+2)=66 | | -6y-30=6(y-7) | | 75x+2=x |