If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(w+56)=663
We move all terms to the left:
w(w+56)-(663)=0
We multiply parentheses
w^2+56w-663=0
a = 1; b = 56; c = -663;
Δ = b2-4ac
Δ = 562-4·1·(-663)
Δ = 5788
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5788}=\sqrt{4*1447}=\sqrt{4}*\sqrt{1447}=2\sqrt{1447}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-2\sqrt{1447}}{2*1}=\frac{-56-2\sqrt{1447}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+2\sqrt{1447}}{2*1}=\frac{-56+2\sqrt{1447}}{2} $
| 12=-4/7y | | 3x+9-9=12-9= | | X3+-5x+6=4.2 | | 4x+5x-30=75-6x | | X-2x=5x | | x÷6+2=-5 | | 4x-(2x-10)=2 | | -16/9=-4/3(5/3+x) | | 5(2p+3)=3(4p+1)-2(3p+2) | | 7x+4=2×+5 | | 3/2-7/4x=-9/8 | | 2(1-3x)=3(5x+2) | | 1/5x-2=-2/3+x | | 6x+4x-54=36-8x | | 16=64^2n | | 5x+7-8(x+1)=4x+5 | | 2j+7=5j-5 | | m−(−15)=−3 | | 8x+96=3x+9 | | 2/3(n-15)=8 | | 7h+1=8h | | 4x+37=24 | | (6x-3)(6x-3)=32 | | 12–-4j=80 | | 2n=9+n | | 5y-8=y+10 | | x^-0.4=0.48 | | 2x+x+44=50 | | 141=26+23m | | 3+5m=8+2m | | -5f=2f+7 | | 3(y)+6–10=89 |