If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(w-36)=0
We multiply parentheses
w^2-36w=0
a = 1; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·1·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*1}=\frac{0}{2} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*1}=\frac{72}{2} =36 $
| 80=(9/5)c+35 | | 2d-3d+2d-6=4d | | -15-3r=9 | | 3n=2×15 | | (X+2)=2x+x+6 | | 86/4=x | | 5p^2+11p+8=0 | | 80=(9/5)c | | 1.15x=10.35 | | 654/9=x | | 21w=4 | | -91=10(-9-3d)+30d | | 178/4=x | | (17+x)5=870 | | c+2.54.3;c=1.8 | | 2(x+3)=3x+11 | | 331/5=x | | -1/2z=2 | | 7=-0.005x^2+1.25x+10 | | 16x-12-9x-11=9x-11 | | 3x.010=2x.05 | | x+5x-15+x=90° | | 55x-33=55x+33 | | 5x+8=2(3x+2 | | 3r+9r=-21 | | 597/8=x | | 15−6(x+1)=12 | | 390/7=x | | 5x2-40x-333=0 | | (h-64)=0 | | 4r+12/8=2r-4/2 | | 130=x^2-x |