If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(w-7)=120
We move all terms to the left:
w(w-7)-(120)=0
We multiply parentheses
w^2-7w-120=0
a = 1; b = -7; c = -120;
Δ = b2-4ac
Δ = -72-4·1·(-120)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-23}{2*1}=\frac{-16}{2} =-8 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+23}{2*1}=\frac{30}{2} =15 $
| 23-3f=2 | | 12+6x=6x+5 | | 5(z+15)=100 | | (x+5)+9x+2)+(x^2-3x)+(4x-3)=44 | | 5(x+3)=–45 | | n-17=-36 | | D=-200t+9000 | | -3x+18=-12 | | 3x+8=-3(7x+4) | | Z=-√3i | | 1/4x+6=-1 | | -7d+14-2=-7d+12 | | 1/3(2x+3)^2=2 | | -3(11-x)-7x=4 | | 12+9m=-4(-6m-3 | | 5x=7=12 | | -5x+4=2(7+2x)-11 | | 2z+34=z+49 | | 2w+6=w+49 | | 4^3x=10^x-2 | | -13-7x=4(x-11) | | g/37=15 | | (2x-5)^2=0 | | 15x+9=10x+2 | | X2-5x+11=0 | | 13-(2x+10)=5+3 | | 81=2w+7w | | 0.4x-7=3.16 | | 62+(7x-11)=103 | | 7(3-5x)=2x-7 | | x+1/4/7=3 | | 0=9h−9h |