If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(w+40)=6000
We move all terms to the left:
w(w+40)-(6000)=0
We multiply parentheses
w^2+40w-6000=0
a = 1; b = 40; c = -6000;
Δ = b2-4ac
Δ = 402-4·1·(-6000)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-160}{2*1}=\frac{-200}{2} =-100 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+160}{2*1}=\frac{120}{2} =60 $
| 4/x*7=10 | | (16+2x)*1(2+2x)=396 | | 30+5/2r=-30 | | r+11+8r=29+r | | 36t-5=15t+13 | | 8x-12+5x+22=180 | | 1+6k=6k+1 | | 6a-3=a+12 | | 5x+3=3x+69 | | X+6y=93 | | 3(y-5)+10=16 | | 3x-17=23-x | | 4y+-3=13 | | 7(n-3)+4(n-3)=10 | | 7p^2+6p-3=0 | | 9x+9=9x-12 | | 5n-9=n+31 | | X^3+3x^2-72x+90=0 | | 7x-5=-5-5x | | x^2+x=4002 | | 3x÷27=81 | | 6+6x+5x=50 | | 1/w+5=(w-3)/w | | 60+5x=x²+46 | | y=19/8 | | w/8-12=-5 | | -7/8=5/6z | | 84x(x+2)=90-13x | | 28=-7/4w | | 2+3x+7x=82 | | 2b=-6+3b=14 | | 0.4(20-10y)=14y-28 |