w+(1/2w+6)-(432)=0

Simple and best practice solution for w+(1/2w+6)-(432)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w+(1/2w+6)-(432)=0 equation:



w+(1/2w+6)-(432)=0
Domain of the equation: 2w+6)!=0
w∈R
We get rid of parentheses
w+1/2w+6-432=0
We multiply all the terms by the denominator
w*2w+6*2w-432*2w+1=0
Wy multiply elements
2w^2+12w-864w+1=0
We add all the numbers together, and all the variables
2w^2-852w+1=0
a = 2; b = -852; c = +1;
Δ = b2-4ac
Δ = -8522-4·2·1
Δ = 725896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{725896}=\sqrt{4*181474}=\sqrt{4}*\sqrt{181474}=2\sqrt{181474}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-852)-2\sqrt{181474}}{2*2}=\frac{852-2\sqrt{181474}}{4} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-852)+2\sqrt{181474}}{2*2}=\frac{852+2\sqrt{181474}}{4} $

See similar equations:

| (5+3n)(2n+2)=240 | | x^2-60x-200=0 | | 9^x=30 | | x+47+273=273 | | 3(2d3(2x-6)=3-4(3-x)-6)=3-4(3-x) | | 7+10k=49 | | 5(x+2)-9(x-2)=4(x-6)=12 | | 5x+-3=2 | | p=2-0.1(x-3)^2 | | (-2/3)x+x=2/3 | | -0.5x-1=0 | | 3x/4-7/4=5x=12 | | 40x+20(1.5x)=2000 | | 6x+14=4x+24 | | 4x-20=x+100 | | 12x+8=18x-6 | | 12x-9=18x+8 | | 12x-9=18x+14 | | 2x+4x+36=180 | | 3x+18+2x-8=90 | | 3x+18+2x-8=0 | | 5+10+5x=50 | | 20+4x-10=90 | | 0.12(y-1)+0.18y=0.01y-0.9 | | 0.1(y-5)+0.02y=0.06y-0.02 | | 2x(5x+1)=22 | | 29=2(5x-7) | | 13y=-6 | | 2x5x6=3x4x | | x=5x2-6/2=8 | | -4(-25/3)+2y=-30 | | 40xx=520 |

Equations solver categories