If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2+3w=40
We move all terms to the left:
w2+3w-(40)=0
We add all the numbers together, and all the variables
w^2+3w-40=0
a = 1; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*1}=\frac{-16}{2} =-8 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*1}=\frac{10}{2} =5 $
| 6y+14-4=-10 | | 3x+6=20x+3 | | 3x+17=12x-19 | | 4x+3x-2x=21+4 | | 16-2x=-9x+9 | | -8x+4=-4x-4 | | -32+17x=-14-4x | | 7x+12=-15x-12 | | 9y-43=4(y-7) | | 2(x+2)-7x=24 | | -6x+49=7x | | 0.25x+0.05(12-x)=0.10(2) | | -7z+12=18 | | 1.8/n=2.5 | | 3x=16.2 | | 6t-13=-6t-1 | | 8u-11=5 | | 5=8.25x | | -4v+14=4v-18 | | 20z-8=-2z+80 | | -3y/9+y=13-8y | | x/(x-1)=6/5 | | 5x-15=6-33x | | 400-2x=150+5x | | -7-37=6y | | 2x-1/2=x+1/4 | | 2(3x-5)=210 | | 12=-(6/7)x | | 2m+6=24=m=15 | | 100-5x=75+2x | | 7t^2-20t-140=0 | | 8x-3=2×+21 |