If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2+4w=0
We add all the numbers together, and all the variables
w^2+4w=0
a = 1; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*1}=\frac{-8}{2} =-4 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*1}=\frac{0}{2} =0 $
| 6(4x-3)=8(3x+2) | | 12x-1+2x+14=83 | | 2x-3/6=2x+3/10 | | 3g=2=5 | | -152=-8(2+b) | | 3a+5=74 | | 12x-1=2x+14 | | 25.36=3s+4.27 | | 9x-133=2x+63 | | 6x-7=2/3x+2 | | 183+-x=120 | | 3/17=y/5 | | 21+5a=53 | | 6x=85+x | | 1/10y-3=-8 | | 2.3x=7.7-0.6x | | x-(2/7)=100 | | -249=-6x-7(-3x+12) | | 16+6a=17 | | 12a-20=4(3a-5) | | 5w-(6+3w)=12+4w | | 91=1/2h(8+5) | | 31x/7-5x=24 | | |6w+3|=9 | | -4(5t-5)+7t=8t-3 | | 25/20=x/4 | | 2.3=7.7-0.6x | | 4(x-4)=11x-9 | | 16-2x=12-6x | | 3(5+h)=-20-3h | | 12−1/5r=2r+1 | | 2x^2+6x-112=0 |