If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2+9w+14=0
We add all the numbers together, and all the variables
w^2+9w+14=0
a = 1; b = 9; c = +14;
Δ = b2-4ac
Δ = 92-4·1·14
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-5}{2*1}=\frac{-14}{2} =-7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+5}{2*1}=\frac{-4}{2} =-2 $
| 6x2=x+15 | | -2+x=-9+6 | | X+28=x+x+2= | | z=24 z=–5 z=5 z=–24 | | y=2+10 | | 3(x+4)=2×+1 | | 4x(9)-4x(5)=128 | | X^2+4y^2+8y-3=0 | | 4u+13=53 | | (5x-7)-5(7x-12)+7=0 | | (9/6t-8)=2 | | a-12/16+42=26 | | 2x-x=+x=4 | | -13+25y=-8 | | 2x+5=3(x+1)−5 | | 3z-2z(1+3)=30 | | 14x-38=130 | | -12-w/4=12 | | 0=3z-6z= | | 54(3x+18)=90 | | 7x-20=3x+41 | | -×-4x-7=-2x+5 | | 9x+5-x-9=20+4x | | 143=(2x+10)(2x+8) | | 2y+3y=3 | | 4d-7-12=23 | | .2x=120 | | 15=v/3=-9 | | 6(c-2)=20 | | 6(y+3)=84 | | 3(x-5)^2+2=434 | | 18+3x=-4 |