If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2-36=0
We add all the numbers together, and all the variables
w^2-36=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $
| 2w-1/2=4w-3/4 | | 2a+5=4+ | | 2x+2x+4=x+x+14 | | 6•4d=32 | | b2-36=0 | | 12x+9-50=-41 | | 0.72+(-1.8y)=0 | | 2+3x=x+10+2 | | 2=3x=x+10+2 | | 2+3x=x=10+2 | | 5x-3+2x+1=3x+10-2x | | 9z+5=104 | | 38=5y=17 | | b-1/4=21/2 | | 47=7w-16 | | b-1/4=21/4 | | 25(x+2x)=38 | | x^2+9x+18=189 | | x-0.05x=3500 | | -5n+9=-16 | | a+4.2=6.6 | | 2(3x-1)+(2x-1)=55 | | 8y+22=46 | | 6y+23=47 | | 4y+35=63 | | −x−24=5+x | | 4c=–6c+10 | | 2(j−4)=10 | | 4n-12=-32 | | –4=2j+–2 | | 2=7/2x | | 32r=4(8r) |