If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2-3w-40=0
We add all the numbers together, and all the variables
w^2-3w-40=0
a = 1; b = -3; c = -40;
Δ = b2-4ac
Δ = -32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-13}{2*1}=\frac{-10}{2} =-5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+13}{2*1}=\frac{16}{2} =8 $
| -5x-13=-40 | | z2-11z-24=0 | | 4x2-12x=7 | | 4z2+4z=-1 | | 2t+1=-1.0413 | | (3x)^-2/3=16 | | 2x^2/2^x=0 | | y2-5y-24=0 | | 2x^2/2^x=16^(3/2) | | -15x+29=5x-21 | | y2-12y-36=0 | | 11n−1=6n+19 | | 20-(0.75-s)8=6 | | q÷6=17 | | 1/3+2x/4=5 | | 1/3x-8=5/6x+4 | | -6(2c+4)-1=-2(c+5) | | x÷3-8=2 | | 2x2-10x-6=0 | | 86=2x-4(-4-3x) | | -6(3x+4)-3x=-9(2x+5)+23 | | 0.5(x)×(x)×(x)=32 | | 5(a-3)=3+5a-20 | | 59=9x-38 | | 59=9x-6 | | 6m^2+5=13m | | x2+16x=0 | | 129=11x-25 | | 51=11x-25 | | 4y-17=51 | | 141=13x-2 | | -16x^2+32x+20=x |