x(1-x)+2x-4=8x-24-x

Simple and best practice solution for x(1-x)+2x-4=8x-24-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(1-x)+2x-4=8x-24-x equation:



x(1-x)+2x-4=8x-24-x
We move all terms to the left:
x(1-x)+2x-4-(8x-24-x)=0
We add all the numbers together, and all the variables
x(-1x+1)+2x-(7x-24)-4=0
We add all the numbers together, and all the variables
2x+x(-1x+1)-(7x-24)-4=0
We multiply parentheses
-1x^2+2x+x-(7x-24)-4=0
We get rid of parentheses
-1x^2+2x+x-7x+24-4=0
We add all the numbers together, and all the variables
-1x^2-4x+20=0
a = -1; b = -4; c = +20;
Δ = b2-4ac
Δ = -42-4·(-1)·20
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{6}}{2*-1}=\frac{4-4\sqrt{6}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{6}}{2*-1}=\frac{4+4\sqrt{6}}{-2} $

See similar equations:

| 3.2g+4=13.6 | | F(x)=-(4+7)^2+3 | | 3.1x+0.2=2.3x-1.4 | | 2(1+5v)=2-2v | | 11=3-8y | | 2x+4=2x=2x+3 | | 29+p=75 | | 3(5+t)-4t=18 | | 10m=8+2 | | -5x+10=-65 | | 3x/2+4x/7=-5 | | x+3/15=-1 | | 6.5x-16=29 | | 6(5x)=(x+14)+(8x+9)+(x+17) | | 22+25.75m=47+19.5m | | 3π+w=2π | | 4x²+5=0 | | 9x-63=4x | | 22m+25.75=47m+19.5 | | -39-p=-2(3-7p)-4p | | (4x-4)=(-3x+52) | | .2x-2=0.52-0.7x | | 2/3×x+5=3 | | 27+8x=7+2(8x+2) | | -4r-12=12 | | 6(x-(2-3x)+1)=4x-6 | | B+8=4(2b+2) | | X=f(1/3) | | (4x-4)=-(3x+52) | | (4x-4)=-3x+52) | | c=37.4+0.25 | | 14.7=-8.7-5.2l |

Equations solver categories