If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(10X+40)=600
We move all terms to the left:
X(10X+40)-(600)=0
We multiply parentheses
10X^2+40X-600=0
a = 10; b = 40; c = -600;
Δ = b2-4ac
Δ = 402-4·10·(-600)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-160}{2*10}=\frac{-200}{20} =-10 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+160}{2*10}=\frac{120}{20} =6 $
| 2x^2-200x+2400=0 | | 11x^2-5x+3=0 | | 3y+4-y=16+2y | | 11y=1y | | m+6=15(m+6) | | 85.000=10.000(1.02)^(2x) | | 1000=x/0.02 | | 6/x+1=12/x+7 | | x+3/2=x-3 | | 4x-4/4=3 | | 32x-t=2187 | | 4x-12=-6x=48 | | 2(120-2b)+4b=240 | | 6/(x-1)+5/(x+1)=6/(x-2) | | 15x=5=45 | | 1078-r=4562 | | 7x+1=7x-17 | | 45+119=8x+108 | | x(4x+11)-4(x^2+7)=49 | | 84+h=142 | | 19x=247+x | | x-(-66.09)=102.9 | | 4x=10=3x | | (x+3)^2-5=(x-3)^2+7 | | 54=11v-5v | | -67=8x-11 | | 16^x-2=64^2x-2 | | x8-15=x4+6 | | 9x+13=6x-8 | | x-4/11-1=2x/1 | | 5u+5=19-u | | 2x-16=122 |