x(11.25+x)=25

Simple and best practice solution for x(11.25+x)=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(11.25+x)=25 equation:



x(11.25+x)=25
We move all terms to the left:
x(11.25+x)-(25)=0
We add all the numbers together, and all the variables
x(x+11.25)-25=0
We multiply parentheses
x^2+11.25x-25=0
a = 1; b = 11.25; c = -25;
Δ = b2-4ac
Δ = 11.252-4·1·(-25)
Δ = 226.5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11.25)-\sqrt{226.5625}}{2*1}=\frac{-11.25-\sqrt{226.5625}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11.25)+\sqrt{226.5625}}{2*1}=\frac{-11.25+\sqrt{226.5625}}{2} $

See similar equations:

| 3x-(2x+8)=5x | | X^+8x-2=0 | | 7/5y=-4 | | 3x^-1=2 | | (2x-16)/x+4=0 | | (2^(x+1))+(2^(x))+(2^(x-1))=1 | | (2^x+1)+(2^x)+(2^x-1)=1 | | 6+4x=2x² | | (2^x+1(+(2^x)+(2^x-1)=1 | | 2^x+1=1 | | 12m+1=12 | | 9(d+2)=-d+1 | | 2(x-4)=-4x+16 | | x^2-11x=28=0 | | 5y+10(y-2)=40 | | x^2=5x=24 | | 4y+9=27 | | x+(x/4)=180 | | 2a^2-39a=0 | | x+x+x+x=54 | | 2x²+5x+20=0 | | 5b=17+3 | | 8(x-7)+7=6(x-1) | | -9-c=-5 | | 35x+10=30x+175 | | 14=33-8(2-4w) | | (3x+21)⅔=729 | | 21/8x=7 | | 6x-10=4x-9 | | 4a=6+2 | | 15+2(x+1)=3(2x+1)-18 | | 4a=8-2 |

Equations solver categories