If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(12x+6)=0
We multiply parentheses
12x^2+6x=0
a = 12; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·12·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*12}=\frac{-12}{24} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*12}=\frac{0}{24} =0 $
| 3x-31/2=x+6 | | -6x+8-14+5x=23 | | 2x-5=3x^2 | | x^-10x+16=0 | | 6w-10=6w-10 | | 4x-15-x=24 | | 4x-2-x=-8 | | (19-5x)+3x=9 | | -3=-(r-7) | | 2x2-x=15 | | 3(2x-6)=-2x+4(2x-4) | | x=3=12 | | 5z+1/2z=1/2z+10 | | -4/7(4x-1/4)=3/7 | | 4(x=0.1)=-6(0.6) | | 7(2x-6)+3x=26 | | 2x÷5-1=4 | | 7x^2+56x-22=0 | | 9(m-3)+m=7m+43 | | 180=2(b-30)+b | | 10-5z=7z+22 | | 2(w-1)=-10(w-3) | | 4x-(2x-4)=2x+4 | | z/4+3=4-z/4 | | 5(2d+3)=-3(-3d-4) | | 2(3x-5)=2(3x-4) | | -22+3x/3x+7=2 | | 1*n+10=17 | | |15x-7|-4=4 | | (3x+2)^2=28 | | 2(4w-1)=-10(w-3)=4 | | 6t+4=3t+2 |