If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(2)+13=75
We move all terms to the left:
x(2)+13-(75)=0
We add all the numbers together, and all the variables
x^2-62=0
a = 1; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·1·(-62)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{62}}{2*1}=\frac{0-2\sqrt{62}}{2} =-\frac{2\sqrt{62}}{2} =-\sqrt{62} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{62}}{2*1}=\frac{0+2\sqrt{62}}{2} =\frac{2\sqrt{62}}{2} =\sqrt{62} $
| 7x+13x=33 | | 2(3x+5)=2x+4 | | (-7x-5)/5=-15 | | 15(t)+4.9*(t^2)=44 | | 3p-5=-1+2p | | 44=15(t)+(1/2*9.8*(t^2)) | | (-7x-5)/5=(-15) | | 4(x-6)=2x/6 | | 44=15(t)+1/2*9.8*(t^2) | | 4x2+25=20 | | 3(8+3m)=4(m+6) | | 2x^2+162= | | 2(x-3)+2=2(2x-4) | | -6-6p=-6(p+1) | | 3w+7/3=19 | | 4.9t^2+15t-44=0 | | x/6=159 | | -3/5m-9=-6 | | 2+2x+32=x+23 | | 22x-55=22x-55 | | 3(4x+7)=-35+20 | | 5(k-2)-6=5k-(4k-1) | | 2x-5(5x+5)=44 | | 2-x=-x+2 | | 9x6=-5x(10-3) | | x+5/2+x+2/7=1 | | 4x+4x-9=29 | | 5x+3=43-4×+× | | 7x-12=9x-4 | | +1/2x=48 | | 0=12–2p–(2p) | | 5/8x+2=57/16 |