If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(2)=400
We move all terms to the left:
x(2)-(400)=0
We add all the numbers together, and all the variables
x^2-400=0
a = 1; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·1·(-400)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*1}=\frac{-40}{2} =-20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*1}=\frac{40}{2} =20 $
| 4x+22+2x+32=180 | | 2x(5)=-7 | | 35=2x(3x)+11 | | -10p=-8p-6 | | F(x)=-2+5x-4 | | x=67+56 | | -5(r+9)=-80 | | 130+1.75d=160 | | 8c+1c=7c-14-2c | | (6x+54)+3x-28)=125 | | 13w-9w-2w+2w-w=15 | | 1x+3=-3x+11 | | 6-2x=5x=9x+16 | | 2+2a+5a=5a-8 | | (2x+11)°=60 | | b-5+6b=23 | | -6z-10=-4-5z | | 3(1+2b)-5=6b-2(b-4) | | –19s+s–18s+3s=–18 | | q−12=41 | | -7(4v+4)+1=-7(4v-4)+1 | | –19s+s−–18s+3s=–18 | | 8k+6k-13k=11 | | 5x-8-4x=-4x | | 1+4K-5k=-k+1 | | 9(t+48)=-36 | | -2+2-7v=-9-6v | | 2x+50+2x-10=180 | | 3p+5(4-6p)=-61 | | w/5+14=27;w= | | 4h2-9=0 | | g(4)=5(4) |