If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(2x+3)=10
We move all terms to the left:
x(2x+3)-(10)=0
We multiply parentheses
2x^2+3x-10=0
a = 2; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·2·(-10)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{89}}{2*2}=\frac{-3-\sqrt{89}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{89}}{2*2}=\frac{-3+\sqrt{89}}{4} $
| 3(x+2)+5(x-4)=4(2x+3)-6x | | 3k+17k-25=3 | | 4u+15=7 | | 3(a+4)+2(2a+5)=12 | | 4x-16=2x-16 | | X-x+1/2=1-x-2/3 | | 1-5n=-n-2n+9 | | 64x=60 | | 6-10z=-8z-10 | | 16x÷3+18=180 | | 2x/6=25/3x | | -8x+32=4(-2-4) | | 1/3+1=5/6x-3 | | 5X+7/3x=2/7 | | 6h+1+h=-4+8h | | 4y-18=2- | | 1/2(x-12)=-26 | | 9+p=-8p-9 | | 25y^+35y=0 | | -9-5k=3-7k | | 42=-7x-42 | | -7b=-6b-10 | | 17=z+9 | | 6m-4m-3(3-m)=6 | | -3+5x=4x-10 | | -15b+4=-24b-41 | | 5x+4=13/2 | | 6+2r=10r-10 | | 4(z-2)=7z+1 | | 36+5n=-3(n+4( | | -5+6c=5c | | 17-8y=3y-5 |