x(2x-3)-(5-x)=83

Simple and best practice solution for x(2x-3)-(5-x)=83 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(2x-3)-(5-x)=83 equation:



x(2x-3)-(5-x)=83
We move all terms to the left:
x(2x-3)-(5-x)-(83)=0
We add all the numbers together, and all the variables
x(2x-3)-(-1x+5)-83=0
We multiply parentheses
2x^2-3x-(-1x+5)-83=0
We get rid of parentheses
2x^2-3x+1x-5-83=0
We add all the numbers together, and all the variables
2x^2-2x-88=0
a = 2; b = -2; c = -88;
Δ = b2-4ac
Δ = -22-4·2·(-88)
Δ = 708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{708}=\sqrt{4*177}=\sqrt{4}*\sqrt{177}=2\sqrt{177}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{177}}{2*2}=\frac{2-2\sqrt{177}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{177}}{2*2}=\frac{2+2\sqrt{177}}{4} $

See similar equations:

| (5-v)(3v-7)=0 | | -6x+2(x-7)=14 | | x4+10=3 | | x/5+16=38 | | (5+3)x=24 | | 80(x+1)=80(5/8+x-3) | | 6b+14=2(3b+7) | | 10x=10-2 | | (8f-9)(f+5)=0 | | 36-2b=16 | | x/4+10=−3 | | 13=2y-17 | | -7w+3(w+4)=8 | | 2(x-6)+6=4x+2 | | .7+15x=16x | | d/3=1/4 | | X+7=2(x+13) | | –7+h=12 | | 11-5=-15-11x | | 8=(x-1) | | N^2+16n-84=-4 | | 8=(x+6) | | -4(6x+9)=-2x | | 6(x+9)=9(x-5) | | w/5+16=31 | | -4(4x+6)=-15x+2 | | –6z=72 | | 8=u/4-15 | | -8(-2x-2)=4x | | 4x2-1=0 | | X+10=2(x+15) | | -7(x-7)=-2(x+7) |

Equations solver categories