x(2x-3)=(2x+8x)(x-5)

Simple and best practice solution for x(2x-3)=(2x+8x)(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(2x-3)=(2x+8x)(x-5) equation:



x(2x-3)=(2x+8x)(x-5)
We move all terms to the left:
x(2x-3)-((2x+8x)(x-5))=0
We add all the numbers together, and all the variables
x(2x-3)-((+10x)(x-5))=0
We multiply parentheses
2x^2-3x-((+10x)(x-5))=0
We multiply parentheses ..
2x^2-((+10x^2-50x))-3x=0
We calculate terms in parentheses: -((+10x^2-50x)), so:
(+10x^2-50x)
We get rid of parentheses
10x^2-50x
Back to the equation:
-(10x^2-50x)
We add all the numbers together, and all the variables
2x^2-3x-(10x^2-50x)=0
We get rid of parentheses
2x^2-10x^2-3x+50x=0
We add all the numbers together, and all the variables
-8x^2+47x=0
a = -8; b = 47; c = 0;
Δ = b2-4ac
Δ = 472-4·(-8)·0
Δ = 2209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2209}=47$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(47)-47}{2*-8}=\frac{-94}{-16} =5+7/8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(47)+47}{2*-8}=\frac{0}{-16} =0 $

See similar equations:

| 4(-3-6x)=108 | | 6(6-6x)=-252 | | 14=x/2+x/4 | | 5/8×+1/16x=7/16+x | | -7(-6-5x)=357 | | 5÷8×+1÷16×=7÷16+x | | -4m+6=22 | | 6(1-4x)=6 | | 8(h-4)-h-(h+7)=0 | | y-4.15=82.9 | | -5+24=-13x-(-12) | | 4r+2=3r-10 | | (-7/4x)+(1/4)=12 | | -7/4x+1/4=12 | | x/8-7=7 | | -5/12+x=-7/24 | | -18=15z-9 | | -11+x=-65 | | -15+2x=2x-15 | | 8x+3(1)=4 | | -18=15z-(2z-2) | | |2x-1|=12 | | 5j-2j=9 | | 8c =56 | | Y=-10x^2-10x+8 | | 13r-10r=18 | | 11u-5u=12 | | 42=x+67 | | 14j-5j=9 | | 18=-2(x+1)-12 | | 5+x+3x-3=2x+9-x | | 5x-1=-4+4x-6 |

Equations solver categories