If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(2x-6)-15=0
We multiply parentheses
2x^2-6x-15=0
a = 2; b = -6; c = -15;
Δ = b2-4ac
Δ = -62-4·2·(-15)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{39}}{2*2}=\frac{6-2\sqrt{39}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{39}}{2*2}=\frac{6+2\sqrt{39}}{4} $
| -2(v-4)+15=29 | | 44=4(q+11)-8 | | 8(z-4)+3=-93 | | n/n+n+n+n=16 | | (√3)^2x+4=243 | | 32=6+7a-5a | | -3(2x+5)-7=14 | | x/7+x/5=10 | | -8(-3k-5)=3k+19 | | -8(-3k-5)=k+19 | | t^2-20t-96=0 | | 20t+20=200 | | (5x-2)/2x=2 | | 2x-1=x^2-16x+64 | | (x-1)(x-4)=1 | | T2-20t-96=0 | | 4(x-3)=2x+(-10) | | (3m)/6−23;m=8 | | 2x^2-5x+20=3x | | 9t-6=6t-9 | | 5x+(-1)=-8x+2 | | 7*x=103 | | -30=10-3x | | | | | | | | -5x+10=10x+9 | | 15+8x=-25 | | 7x+5x+12=1800 | | 18a=-36 | | |3x-24|=-6 | | 6-x-x+10=15-7x-5 |