x(3x+1)=8(8+x+2)

Simple and best practice solution for x(3x+1)=8(8+x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(3x+1)=8(8+x+2) equation:


Simplifying
x(3x + 1) = 8(8 + x + 2)

Reorder the terms:
x(1 + 3x) = 8(8 + x + 2)
(1 * x + 3x * x) = 8(8 + x + 2)
(1x + 3x2) = 8(8 + x + 2)

Reorder the terms:
1x + 3x2 = 8(8 + 2 + x)

Combine like terms: 8 + 2 = 10
1x + 3x2 = 8(10 + x)
1x + 3x2 = (10 * 8 + x * 8)
1x + 3x2 = (80 + 8x)

Solving
1x + 3x2 = 80 + 8x

Solving for variable 'x'.

Reorder the terms:
-80 + 1x + -8x + 3x2 = 80 + 8x + -80 + -8x

Combine like terms: 1x + -8x = -7x
-80 + -7x + 3x2 = 80 + 8x + -80 + -8x

Reorder the terms:
-80 + -7x + 3x2 = 80 + -80 + 8x + -8x

Combine like terms: 80 + -80 = 0
-80 + -7x + 3x2 = 0 + 8x + -8x
-80 + -7x + 3x2 = 8x + -8x

Combine like terms: 8x + -8x = 0
-80 + -7x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-26.66666667 + -2.333333333x + x2 = 0

Move the constant term to the right:

Add '26.66666667' to each side of the equation.
-26.66666667 + -2.333333333x + 26.66666667 + x2 = 0 + 26.66666667

Reorder the terms:
-26.66666667 + 26.66666667 + -2.333333333x + x2 = 0 + 26.66666667

Combine like terms: -26.66666667 + 26.66666667 = 0.00000000
0.00000000 + -2.333333333x + x2 = 0 + 26.66666667
-2.333333333x + x2 = 0 + 26.66666667

Combine like terms: 0 + 26.66666667 = 26.66666667
-2.333333333x + x2 = 26.66666667

The x term is -2.333333333x.  Take half its coefficient (-1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
-2.333333333x + 1.361111112 + x2 = 26.66666667 + 1.361111112

Reorder the terms:
1.361111112 + -2.333333333x + x2 = 26.66666667 + 1.361111112

Combine like terms: 26.66666667 + 1.361111112 = 28.027777782
1.361111112 + -2.333333333x + x2 = 28.027777782

Factor a perfect square on the left side:
(x + -1.166666667)(x + -1.166666667) = 28.027777782

Calculate the square root of the right side: 5.294126725

Break this problem into two subproblems by setting 
(x + -1.166666667) equal to 5.294126725 and -5.294126725.

Subproblem 1

x + -1.166666667 = 5.294126725 Simplifying x + -1.166666667 = 5.294126725 Reorder the terms: -1.166666667 + x = 5.294126725 Solving -1.166666667 + x = 5.294126725 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = 5.294126725 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = 5.294126725 + 1.166666667 x = 5.294126725 + 1.166666667 Combine like terms: 5.294126725 + 1.166666667 = 6.460793392 x = 6.460793392 Simplifying x = 6.460793392

Subproblem 2

x + -1.166666667 = -5.294126725 Simplifying x + -1.166666667 = -5.294126725 Reorder the terms: -1.166666667 + x = -5.294126725 Solving -1.166666667 + x = -5.294126725 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = -5.294126725 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = -5.294126725 + 1.166666667 x = -5.294126725 + 1.166666667 Combine like terms: -5.294126725 + 1.166666667 = -4.127460058 x = -4.127460058 Simplifying x = -4.127460058

Solution

The solution to the problem is based on the solutions from the subproblems. x = {6.460793392, -4.127460058}

See similar equations:

| 4x^2-8x-48=0 | | y-9+3y=7 | | 8(x-8)+4=-60 | | 4(2x-7)=3(-x+5)+1 | | 3xy^2+5y+2x=0 | | 5x+2=102+3x | | .75=-24 | | 35x^2+27x-18=0 | | 3x+11=4x-8 | | 2x+4+3x=34 | | 14x^2-92x+78=0 | | -6d+5=17 | | 8=2(k-5) | | 3.5t+9=12 | | 4m-8=6 | | 6x^2-17x-19=0 | | 2.1x-2.5=-8.8 | | 2.1x-2.5=-8 | | 3(2x-1)=-27-6x | | 4b+5=3b+3 | | 7x+5=(x+2)-12 | | 4x^2-5x-174=0 | | 9=-6r+1 | | 8-2t=1 | | y-1=3 | | 2x^2+13x-174=0 | | 6(2x)+3x=17 | | 2x^2+13x+174=0 | | -9=6x+36 | | 9x+10=10x-21 | | -(x-8)= | | 4x^2-5x-114=0 |

Equations solver categories