If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(3x+25)=180
We move all terms to the left:
x(3x+25)-(180)=0
We multiply parentheses
3x^2+25x-180=0
a = 3; b = 25; c = -180;
Δ = b2-4ac
Δ = 252-4·3·(-180)
Δ = 2785
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{2785}}{2*3}=\frac{-25-\sqrt{2785}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{2785}}{2*3}=\frac{-25+\sqrt{2785}}{6} $
| 15=x+(x-3) | | 2^4x+5=8^x | | 4x+-2x+10=x | | 31=18.2t | | 3x+15-7=-7 | | 10/25=5/n | | X4-x2+1=0 | | 7f=H | | v^2+11v-28=0 | | 1/3y=200 | | 2/5c+6=12 | | 2x^2-57x+391=0 | | 7x-29=3(x+1) | | 7^9x=12 | | 2x^2-7x=x^2-12 | | 7x+21=-5 | | 1=(x/50)+100000 | | 2m2+13m+12=0 | | 6x-6-6x=6 | | 4y=11y+3 | | 4^3x=31 | | (X)+(2x+8)=77 | | 3m–8=2m | | x/7-9/4=-x/12+4+x/4 | | 2/3y=29 | | 12x-31=6x | | 4(v+1/2)=8(v+3/4) | | 2.4z+1.2z−6.5=0.7 | | -6(7-7m)=-252 | | -7x-25=31 | | 683+2x-14=678 | | 3x+15-7x3x=-7 |