If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(3x+4)=12
We move all terms to the left:
x(3x+4)-(12)=0
We multiply parentheses
3x^2+4x-12=0
a = 3; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·3·(-12)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*3}=\frac{-4-4\sqrt{10}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*3}=\frac{-4+4\sqrt{10}}{6} $
| 5x+20x-10=5(5x+5) | | 8x=-12+2x | | x(3x+4)+12=0 | | -10+2x-8=6x+4 | | 7x-13=6x-41 | | 3.5+10m=8.29 | | x=5+0.85x | | 6x–5=0.2x+0.8 | | 5m-1=-25 | | x/6+4/6=2/3 | | f-10/3=0 | | 43x+24=43x+70 | | 3+5=6z-7-2z | | 5(x+1)+4x^2+4x+3=3(x+3) | | 3.9+10m=6.21 | | (2x10)+3+(2x+5)+(2x-15)=180 | | c/9.1=7.2 | | (2b-90)+3/2b+b+(b+45)=540 | | 90x=60x+480-10 | | 4z+16=6z+4 | | -3(x+20)=-90 | | –(8m+4)=4m–2(6m+2) | | 2x-1=1-2x-3 | | –5a−–11a+3=9 | | 25x2=225 | | 1/3(6x-3)+4=5(x+9) | | 52=3x+1 | | m/3-2=-15 | | 30x^2=20x | | 4x+16x-4=4(5x+6) | | -105(1+4x)=-5 | | 3(x-2)=(x-3) |