x(3x+5)=4

Simple and best practice solution for x(3x+5)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(3x+5)=4 equation:


Simplifying
x(3x + 5) = 4

Reorder the terms:
x(5 + 3x) = 4
(5 * x + 3x * x) = 4
(5x + 3x2) = 4

Solving
5x + 3x2 = 4

Solving for variable 'x'.

Reorder the terms:
-4 + 5x + 3x2 = 4 + -4

Combine like terms: 4 + -4 = 0
-4 + 5x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-1.333333333 + 1.666666667x + x2 = 0

Move the constant term to the right:

Add '1.333333333' to each side of the equation.
-1.333333333 + 1.666666667x + 1.333333333 + x2 = 0 + 1.333333333

Reorder the terms:
-1.333333333 + 1.333333333 + 1.666666667x + x2 = 0 + 1.333333333

Combine like terms: -1.333333333 + 1.333333333 = 0.000000000
0.000000000 + 1.666666667x + x2 = 0 + 1.333333333
1.666666667x + x2 = 0 + 1.333333333

Combine like terms: 0 + 1.333333333 = 1.333333333
1.666666667x + x2 = 1.333333333

The x term is 1.666666667x.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667x + 0.6944444447 + x2 = 1.333333333 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667x + x2 = 1.333333333 + 0.6944444447

Combine like terms: 1.333333333 + 0.6944444447 = 2.0277777777
0.6944444447 + 1.666666667x + x2 = 2.0277777777

Factor a perfect square on the left side:
(x + 0.8333333335)(x + 0.8333333335) = 2.0277777777

Calculate the square root of the right side: 1.424000624

Break this problem into two subproblems by setting 
(x + 0.8333333335) equal to 1.424000624 and -1.424000624.

Subproblem 1

x + 0.8333333335 = 1.424000624 Simplifying x + 0.8333333335 = 1.424000624 Reorder the terms: 0.8333333335 + x = 1.424000624 Solving 0.8333333335 + x = 1.424000624 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 1.424000624 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 1.424000624 + -0.8333333335 x = 1.424000624 + -0.8333333335 Combine like terms: 1.424000624 + -0.8333333335 = 0.5906672905 x = 0.5906672905 Simplifying x = 0.5906672905

Subproblem 2

x + 0.8333333335 = -1.424000624 Simplifying x + 0.8333333335 = -1.424000624 Reorder the terms: 0.8333333335 + x = -1.424000624 Solving 0.8333333335 + x = -1.424000624 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -1.424000624 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -1.424000624 + -0.8333333335 x = -1.424000624 + -0.8333333335 Combine like terms: -1.424000624 + -0.8333333335 = -2.2573339575 x = -2.2573339575 Simplifying x = -2.2573339575

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.5906672905, -2.2573339575}

See similar equations:

| 3x-7=53-9x | | 20a+14+11a=47 | | 4x-6=24x+9 | | 7x^2+118=125 | | 7(a+9)= | | 9*-12=7*x+2 | | 7x^2=49+14 | | 2x^2+42=0 | | (3z+2)(8+z)=0 | | 6x+4=2x+44 | | 6=3(x+4) | | (x+35)(x+10)=1260 | | 3*x+34=5*x+10 | | 3x^2+2x^2=125 | | -8+6(-x-3)+14x= | | 9a+1=73 | | 3x^3+2x^2-27x-17=0 | | -2z-5-4z=6-6z-11 | | -5(x-6)=-6x | | 19-6(q-5)=5 | | 120-5x=40x+20 | | 2(12.7)+y=10 | | 12*x+8=9*x+23 | | (n+4)*10=70 | | 4x-1/3=7/1 | | .2(3x-4)=-2x+2 | | v/(-6)+1=0 | | (n-9)*5=25 | | x-5.4=7.3 | | 6x^2-x+40=0 | | 0.8333-0.5x= | | Y-3x=21 |

Equations solver categories