x(3x-7)=120

Simple and best practice solution for x(3x-7)=120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(3x-7)=120 equation:


Simplifying
x(3x + -7) = 120

Reorder the terms:
x(-7 + 3x) = 120
(-7 * x + 3x * x) = 120
(-7x + 3x2) = 120

Solving
-7x + 3x2 = 120

Solving for variable 'x'.

Reorder the terms:
-120 + -7x + 3x2 = 120 + -120

Combine like terms: 120 + -120 = 0
-120 + -7x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-40 + -2.333333333x + x2 = 0

Move the constant term to the right:

Add '40' to each side of the equation.
-40 + -2.333333333x + 40 + x2 = 0 + 40

Reorder the terms:
-40 + 40 + -2.333333333x + x2 = 0 + 40

Combine like terms: -40 + 40 = 0
0 + -2.333333333x + x2 = 0 + 40
-2.333333333x + x2 = 0 + 40

Combine like terms: 0 + 40 = 40
-2.333333333x + x2 = 40

The x term is -2.333333333x.  Take half its coefficient (-1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
-2.333333333x + 1.361111112 + x2 = 40 + 1.361111112

Reorder the terms:
1.361111112 + -2.333333333x + x2 = 40 + 1.361111112

Combine like terms: 40 + 1.361111112 = 41.361111112
1.361111112 + -2.333333333x + x2 = 41.361111112

Factor a perfect square on the left side:
(x + -1.166666667)(x + -1.166666667) = 41.361111112

Calculate the square root of the right side: 6.431260461

Break this problem into two subproblems by setting 
(x + -1.166666667) equal to 6.431260461 and -6.431260461.

Subproblem 1

x + -1.166666667 = 6.431260461 Simplifying x + -1.166666667 = 6.431260461 Reorder the terms: -1.166666667 + x = 6.431260461 Solving -1.166666667 + x = 6.431260461 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = 6.431260461 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = 6.431260461 + 1.166666667 x = 6.431260461 + 1.166666667 Combine like terms: 6.431260461 + 1.166666667 = 7.597927128 x = 7.597927128 Simplifying x = 7.597927128

Subproblem 2

x + -1.166666667 = -6.431260461 Simplifying x + -1.166666667 = -6.431260461 Reorder the terms: -1.166666667 + x = -6.431260461 Solving -1.166666667 + x = -6.431260461 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = -6.431260461 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = -6.431260461 + 1.166666667 x = -6.431260461 + 1.166666667 Combine like terms: -6.431260461 + 1.166666667 = -5.264593794 x = -5.264593794 Simplifying x = -5.264593794

Solution

The solution to the problem is based on the solutions from the subproblems. x = {7.597927128, -5.264593794}

See similar equations:

| 8z+9-7z=-6-16z+6 | | 2.6(5)-13=x | | 5(2x+6)=-4(5-2)+3x | | 2/3b=10-1/6b | | 15/n=20/8 | | 1.9r/0.3 | | 2z+2=3z | | 5*2*x=15 | | n=5+16/4 | | 14-(2q+5)=-2q+5 | | 18+7x=-8(3x+2) | | -6=23-2x-5 | | 4t-20+2=t+3 | | 8/11=4/y+2 | | 4.7=r/5 | | 3/4x=4+1/3x | | -12(d^4)=-0.75 | | 1/4/3/7 | | 2x-38=-7(-6+6x) | | m/11+1=-10 | | 5/2=4x/8 | | 4.09=t+y | | 6-5x+9x=-2(-6x+1) | | 8+9-(x-2)=17-5x | | 8+5y=-32 | | 7+z/2=13 | | 4(7)-4(2)+7(6)= | | 4(x-5)+4x=4(2x+4)-13 | | x=5/6x+7 | | 3x-18+27+10-11=25+4x-7x+12+3x | | x^2-45=580 | | x(2x-2)+45=180 |

Equations solver categories