x(5/6)-(1/2)=7

Simple and best practice solution for x(5/6)-(1/2)=7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(5/6)-(1/2)=7 equation:



x(5/6)-(1/2)=7
We move all terms to the left:
x(5/6)-(1/2)-(7)=0
determiningTheFunctionDomain x(5/6)-7-(1/2)=0
We add all the numbers together, and all the variables
x(+5/6)-7-(+1/2)=0
We multiply parentheses
5x^2-7-(+1/2)=0
We get rid of parentheses
5x^2-7-1/2=0
We multiply all the terms by the denominator
5x^2*2-1-7*2=0
We add all the numbers together, and all the variables
5x^2*2-15=0
Wy multiply elements
10x^2-15=0
a = 10; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·10·(-15)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{6}}{2*10}=\frac{0-10\sqrt{6}}{20} =-\frac{10\sqrt{6}}{20} =-\frac{\sqrt{6}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{6}}{2*10}=\frac{0+10\sqrt{6}}{20} =\frac{10\sqrt{6}}{20} =\frac{\sqrt{6}}{2} $

See similar equations:

| 6x-2x+3x+7=28 | | 3/5•t-2=7 | | -4/5=1/3w-1/2 | | 1/5x+1/2=1 | | 56-4x=14-10 | | 6x+12x+12=102 | | 12+3x=5x-10+14 | | (2/3)x-(1/6)=x | | 7=3/5•t-2 | | 1/1/4=a×3/8 | | A-2a+1a=3 | | 10.50=1.00m-4.55 | | -12=11x−45 | | 1/2a=12 | | |x+2|+4=20 | | (5/6)x-0.5=-7 | | 7m/5=1/5 | | 22=40+r | | 7x+6=-8+3x+22 | | 5x^2-13x-8=0. | | 2w-11=23 | | -5+(3-6i)=0 | | (3w+8)/2=25 | | -15-4x=-6x+21 | | 10x–=9x+ | | 10(2y+2)-y=2(8y=8) | | 1=4.5+b | | -0.7d=1.4 | | 5x+3+10x-5=17x-16 | | 3/11=k/13 | | X-2-3x+x=78 | | 3x=–15 |

Equations solver categories