If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(6x+13)+5=0
We multiply parentheses
6x^2+13x+5=0
a = 6; b = 13; c = +5;
Δ = b2-4ac
Δ = 132-4·6·5
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-7}{2*6}=\frac{-20}{12} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+7}{2*6}=\frac{-6}{12} =-1/2 $
| 4y=–56 | | 0.2x+2=12.6 | | 3x(-2)+7(-1)+2=0 | | x1/4=2.2 | | 85-21+6x+32=180 | | 3a/4=(a+3)/2 | | 10u-10=7 | | k-8=1.18 | | 2(5t+1)=7t+5 | | 3(3x+15)=45 | | 11t=9+10t | | 7x+9-5x+3=180 | | 6r-r=15 | | 3x(2x+12)=48 | | 1=16-3p | | 2/10m=20/m | | 6w=34 | | 4n=5n+15=5n+7n | | -80=-15y-48 | | -1+5=-3x+-1 | | (x−1)2=(x−2)2−3 | | 3j—4=16 | | 41/11−x=25/11 | | 5f+3=2f-7 | | 15+.55x=20+.3x | | -2(q+-16)=14 | | y=1/416 | | 15x-8=-2x+7 | | 9/5C+32c=30 | | 9t-3t=6 | | -1=17-j | | 7x^2+44=100 |