x(6x+400)=40000

Simple and best practice solution for x(6x+400)=40000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(6x+400)=40000 equation:


Simplifying
x(6x + 400) = 40000

Reorder the terms:
x(400 + 6x) = 40000
(400 * x + 6x * x) = 40000
(400x + 6x2) = 40000

Solving
400x + 6x2 = 40000

Solving for variable 'x'.

Reorder the terms:
-40000 + 400x + 6x2 = 40000 + -40000

Combine like terms: 40000 + -40000 = 0
-40000 + 400x + 6x2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-20000 + 200x + 3x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-20000 + 200x + 3x2)' equal to zero and attempt to solve: Simplifying -20000 + 200x + 3x2 = 0 Solving -20000 + 200x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -6666.666667 + 66.66666667x + x2 = 0 Move the constant term to the right: Add '6666.666667' to each side of the equation. -6666.666667 + 66.66666667x + 6666.666667 + x2 = 0 + 6666.666667 Reorder the terms: -6666.666667 + 6666.666667 + 66.66666667x + x2 = 0 + 6666.666667 Combine like terms: -6666.666667 + 6666.666667 = 0.000000 0.000000 + 66.66666667x + x2 = 0 + 6666.666667 66.66666667x + x2 = 0 + 6666.666667 Combine like terms: 0 + 6666.666667 = 6666.666667 66.66666667x + x2 = 6666.666667 The x term is 66.66666667x. Take half its coefficient (33.33333334). Square it (1111.111112) and add it to both sides. Add '1111.111112' to each side of the equation. 66.66666667x + 1111.111112 + x2 = 6666.666667 + 1111.111112 Reorder the terms: 1111.111112 + 66.66666667x + x2 = 6666.666667 + 1111.111112 Combine like terms: 6666.666667 + 1111.111112 = 7777.777779 1111.111112 + 66.66666667x + x2 = 7777.777779 Factor a perfect square on the left side: (x + 33.33333334)(x + 33.33333334) = 7777.777779 Calculate the square root of the right side: 88.191710376 Break this problem into two subproblems by setting (x + 33.33333334) equal to 88.191710376 and -88.191710376.

Subproblem 1

x + 33.33333334 = 88.191710376 Simplifying x + 33.33333334 = 88.191710376 Reorder the terms: 33.33333334 + x = 88.191710376 Solving 33.33333334 + x = 88.191710376 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-33.33333334' to each side of the equation. 33.33333334 + -33.33333334 + x = 88.191710376 + -33.33333334 Combine like terms: 33.33333334 + -33.33333334 = 0.00000000 0.00000000 + x = 88.191710376 + -33.33333334 x = 88.191710376 + -33.33333334 Combine like terms: 88.191710376 + -33.33333334 = 54.858377036 x = 54.858377036 Simplifying x = 54.858377036

Subproblem 2

x + 33.33333334 = -88.191710376 Simplifying x + 33.33333334 = -88.191710376 Reorder the terms: 33.33333334 + x = -88.191710376 Solving 33.33333334 + x = -88.191710376 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-33.33333334' to each side of the equation. 33.33333334 + -33.33333334 + x = -88.191710376 + -33.33333334 Combine like terms: 33.33333334 + -33.33333334 = 0.00000000 0.00000000 + x = -88.191710376 + -33.33333334 x = -88.191710376 + -33.33333334 Combine like terms: -88.191710376 + -33.33333334 = -121.525043716 x = -121.525043716 Simplifying x = -121.525043716

Solution

The solution to the problem is based on the solutions from the subproblems. x = {54.858377036, -121.525043716}

Solution

x = {54.858377036, -121.525043716}

See similar equations:

| x^2+10x=32 | | 50=4.5x-6 | | 5.1+x=6.2 | | 54-y+3=3y+9 | | h=-16t^2-14t+100 | | 8x(1-12)= | | 0=16x^2+200x+15 | | 3x-58=124 | | 0.5(5-7x)=8-(4x+4) | | 1632=(x+4) | | 4x+7-x=25-6x | | 3x+45=x | | 4x^3-156x^2-160x= | | -9=3x-6x | | 62=(x+21) | | (3+x)(7-4)=18 | | 5x^3-55x^2+50x= | | 52.5=5x | | 3x^6+30x^5+63x^4= | | 4xy^2-100x= | | 4b-16=10b-12 | | 0.8x/0.6+5=2 | | 4b-4=10b | | graphy=x^2+2 | | 5x^3-115x^2-120x= | | v=u/6 | | K^2-16k=17 | | 5n+34=132 | | 5x^5-4x^2-x+1=0 | | 5v^2+13=-6 | | -2y=-1x-6 | | 9y^2x^2+24yx^2+16x^2= |

Equations solver categories