x(7x+300)=50000

Simple and best practice solution for x(7x+300)=50000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(7x+300)=50000 equation:


Simplifying
x(7x + 300) = 50000

Reorder the terms:
x(300 + 7x) = 50000
(300 * x + 7x * x) = 50000
(300x + 7x2) = 50000

Solving
300x + 7x2 = 50000

Solving for variable 'x'.

Reorder the terms:
-50000 + 300x + 7x2 = 50000 + -50000

Combine like terms: 50000 + -50000 = 0
-50000 + 300x + 7x2 = 0

Begin completing the square.  Divide all terms by
7 the coefficient of the squared term: 

Divide each side by '7'.
-7142.857143 + 42.85714286x + x2 = 0

Move the constant term to the right:

Add '7142.857143' to each side of the equation.
-7142.857143 + 42.85714286x + 7142.857143 + x2 = 0 + 7142.857143

Reorder the terms:
-7142.857143 + 7142.857143 + 42.85714286x + x2 = 0 + 7142.857143

Combine like terms: -7142.857143 + 7142.857143 = 0.000000
0.000000 + 42.85714286x + x2 = 0 + 7142.857143
42.85714286x + x2 = 0 + 7142.857143

Combine like terms: 0 + 7142.857143 = 7142.857143
42.85714286x + x2 = 7142.857143

The x term is 42.85714286x.  Take half its coefficient (21.42857143).
Square it (459.1836735) and add it to both sides.

Add '459.1836735' to each side of the equation.
42.85714286x + 459.1836735 + x2 = 7142.857143 + 459.1836735

Reorder the terms:
459.1836735 + 42.85714286x + x2 = 7142.857143 + 459.1836735

Combine like terms: 7142.857143 + 459.1836735 = 7602.0408165
459.1836735 + 42.85714286x + x2 = 7602.0408165

Factor a perfect square on the left side:
(x + 21.42857143)(x + 21.42857143) = 7602.0408165

Calculate the square root of the right side: 87.189682971

Break this problem into two subproblems by setting 
(x + 21.42857143) equal to 87.189682971 and -87.189682971.

Subproblem 1

x + 21.42857143 = 87.189682971 Simplifying x + 21.42857143 = 87.189682971 Reorder the terms: 21.42857143 + x = 87.189682971 Solving 21.42857143 + x = 87.189682971 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-21.42857143' to each side of the equation. 21.42857143 + -21.42857143 + x = 87.189682971 + -21.42857143 Combine like terms: 21.42857143 + -21.42857143 = 0.00000000 0.00000000 + x = 87.189682971 + -21.42857143 x = 87.189682971 + -21.42857143 Combine like terms: 87.189682971 + -21.42857143 = 65.761111541 x = 65.761111541 Simplifying x = 65.761111541

Subproblem 2

x + 21.42857143 = -87.189682971 Simplifying x + 21.42857143 = -87.189682971 Reorder the terms: 21.42857143 + x = -87.189682971 Solving 21.42857143 + x = -87.189682971 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-21.42857143' to each side of the equation. 21.42857143 + -21.42857143 + x = -87.189682971 + -21.42857143 Combine like terms: 21.42857143 + -21.42857143 = 0.00000000 0.00000000 + x = -87.189682971 + -21.42857143 x = -87.189682971 + -21.42857143 Combine like terms: -87.189682971 + -21.42857143 = -108.618254401 x = -108.618254401 Simplifying x = -108.618254401

Solution

The solution to the problem is based on the solutions from the subproblems. x = {65.761111541, -108.618254401}

See similar equations:

| 3t-6=4(t+6) | | a-23a= | | 7x^2+3x=3 | | -3+3x=x+5 | | 2y-8=4y-16+4 | | 38t^2+26t^2+5=0 | | 2x^2=16+10x | | 5k+31=-2-7(3-2k) | | 8y-m=gy | | 6x=2(7x+24) | | y=3x^2+8x+7 | | 8w-16w=-40 | | 5(2p+2)-9=2 | | -5*10-1= | | -10=-14v-14v | | 17-48=3(x-3)-7 | | -3k+10-6k=100 | | 6*2(1+2)= | | 2x^2-4x+4=3 | | 66.6666666667h-9=6-66.6666666667h | | 3w-21=15+2w | | -6(4y)-3+4(5y+5)= | | -7(-x+2)+10(-x)+3(-5x-3)+23= | | 6m+8-2m=32 | | 11-42=4(x-1)-7 | | -p+4(4p-3)+6= | | x-x^2+3=7 | | -4(2y-3)+7y=-16 | | -4(2y-3)+7y=16 | | -492y-30+7y=16 | | 3x=-x^2+8 | | 8k+2(5k-3)=7k-28 |

Equations solver categories