If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x(8y + 10z) = y(8x + 8z) * andy(8x + 8z) (8y * x + 10z * x) = y(8x + 8z) * andy(8x + 8z) (8xy + 10xz) = y(8x + 8z) * andy(8x + 8z) Reorder the terms for easier multiplication: 8xy + 10xz = y * adny(8x + 8z)(8x + 8z) Multiply y * adny 8xy + 10xz = adny2(8x + 8z)(8x + 8z) Multiply (8x + 8z) * (8x + 8z) 8xy + 10xz = adny2(8x * (8x + 8z) + 8z * (8x + 8z)) 8xy + 10xz = adny2((8x * 8x + 8z * 8x) + 8z * (8x + 8z)) Reorder the terms: 8xy + 10xz = adny2((64xz + 64x2) + 8z * (8x + 8z)) 8xy + 10xz = adny2((64xz + 64x2) + 8z * (8x + 8z)) 8xy + 10xz = adny2(64xz + 64x2 + (8x * 8z + 8z * 8z)) 8xy + 10xz = adny2(64xz + 64x2 + (64xz + 64z2)) Reorder the terms: 8xy + 10xz = adny2(64xz + 64xz + 64x2 + 64z2) Combine like terms: 64xz + 64xz = 128xz 8xy + 10xz = adny2(128xz + 64x2 + 64z2) 8xy + 10xz = (128xz * adny2 + 64x2 * adny2 + 64z2 * adny2) 8xy + 10xz = (128adnxy2z + 64adnx2y2 + 64adny2z2) Solving 8xy + 10xz = 128adnxy2z + 64adnx2y2 + 64adny2z2 Solving for variable 'x'. Reorder the terms: -128adnxy2z + -64adnx2y2 + -64adny2z2 + 8xy + 10xz = 128adnxy2z + 64adnx2y2 + 64adny2z2 + -128adnxy2z + -64adnx2y2 + -64adny2z2 Reorder the terms: -128adnxy2z + -64adnx2y2 + -64adny2z2 + 8xy + 10xz = 128adnxy2z + -128adnxy2z + 64adnx2y2 + -64adnx2y2 + 64adny2z2 + -64adny2z2 Combine like terms: 128adnxy2z + -128adnxy2z = 0 -128adnxy2z + -64adnx2y2 + -64adny2z2 + 8xy + 10xz = 0 + 64adnx2y2 + -64adnx2y2 + 64adny2z2 + -64adny2z2 -128adnxy2z + -64adnx2y2 + -64adny2z2 + 8xy + 10xz = 64adnx2y2 + -64adnx2y2 + 64adny2z2 + -64adny2z2 Combine like terms: 64adnx2y2 + -64adnx2y2 = 0 -128adnxy2z + -64adnx2y2 + -64adny2z2 + 8xy + 10xz = 0 + 64adny2z2 + -64adny2z2 -128adnxy2z + -64adnx2y2 + -64adny2z2 + 8xy + 10xz = 64adny2z2 + -64adny2z2 Combine like terms: 64adny2z2 + -64adny2z2 = 0 -128adnxy2z + -64adnx2y2 + -64adny2z2 + 8xy + 10xz = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-64adnxy2z + -32adnx2y2 + -32adny2z2 + 4xy + 5xz) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-64adnxy2z + -32adnx2y2 + -32adny2z2 + 4xy + 5xz)' equal to zero and attempt to solve: Simplifying -64adnxy2z + -32adnx2y2 + -32adny2z2 + 4xy + 5xz = 0 Solving -64adnxy2z + -32adnx2y2 + -32adny2z2 + 4xy + 5xz = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 3x^2-5x+6=2x^2+4x-14 | | 4=7+1+6x | | m+qn=r | | 5x^2-20x+6=0 | | 2m+p=16 | | 1.375(4x-8)-2=1.375(8x-12) | | 3.7y+5=8.1y-21.4 | | -(-11x)= | | 4(5x+3)=36 | | 3(x+3)-2=-5 | | 9n^2=-192+96n | | 3z-2=2(2z-5) | | 3(2x+1)-4=6x-1 | | 6b-9b=10(1-b)+9b+18 | | x^2+10x+137=0 | | 4x+3=2(2x+1.5) | | f(x)=-16x^2+50x | | 4x+3=3-(3x-3) | | 9x^2+32x-16=0 | | 6x+4y-2x+y= | | 2x+3=4-(8x-3) | | 12x^2=30x+150 | | -3(k+5)=3(k+1) | | 4x^3+sinx= | | 5(x-1)-2x=7 | | log(2x-7)=2 | | 49x^2+14x-840=0 | | 2(x+2)-3=7 | | 4-(y-3)=3(y+1)-4(1-y) | | 6x=x^2-40 | | 49x^2-14x+840=0 | | .85=-log(x) |