x(x+1)+(x=2)+(x+3)=-26

Simple and best practice solution for x(x+1)+(x=2)+(x+3)=-26 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+1)+(x=2)+(x+3)=-26 equation:



x(x+1)+(x=2)+(x+3)=-26
We move all terms to the left:
x(x+1)+(x-(2)+(x+3))=0
We multiply parentheses
x^2+x+(x-2+(x+3))=0
We calculate terms in parentheses: +(x-2+(x+3)), so:
x-2+(x+3)
determiningTheFunctionDomain x+(x+3)-2
We get rid of parentheses
x+x+3-2
We add all the numbers together, and all the variables
2x+1
Back to the equation:
+(2x+1)
We get rid of parentheses
x^2+x+2x+1=0
We add all the numbers together, and all the variables
x^2+3x+1=0
a = 1; b = 3; c = +1;
Δ = b2-4ac
Δ = 32-4·1·1
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{5}}{2*1}=\frac{-3-\sqrt{5}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{5}}{2*1}=\frac{-3+\sqrt{5}}{2} $

See similar equations:

| x/8+2=4 | | 11+x=7x-8(-x+1) | | 9+a10=10 | | 7x+5+3x-2=63 | | 10x+4+x=11x-1 | | N2=-18-9n | | x+3+5=8 | | 6.1g+9=3.1g+18 | | 2n+8=5N-4N | | 2k2-2=144 | | 360=x-3+x+8+x-5+x | | 20•x=1470 | | 72=5u+4u | | 642x+5=128 | | 10(-12+x)=-170 | | 6x-x+2=5x-2 | | 8=x3+11 | | 12+5x+4x-3=45 | | 1470=x•20 | | 180=x+8+2x+x | | -19x-1=-12x+4x | | 8z+8=9z-2z | | c=-30+-5c | | 10n2+2=292 | | 9r-r+6=78 | | 4(y-3)-3y=2(y-6) | | 122n=7n-15 | | 34x2−12=0 | | 4x^2-20x+33=0 | | S−1.4x=6.3 | | -3.46x=9.17 | | 7/3+3x=11/3-4x |

Equations solver categories