x(x+1)=10(2x+1)+56

Simple and best practice solution for x(x+1)=10(2x+1)+56 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+1)=10(2x+1)+56 equation:



x(x+1)=10(2x+1)+56
We move all terms to the left:
x(x+1)-(10(2x+1)+56)=0
We multiply parentheses
x^2+x-(10(2x+1)+56)=0
We calculate terms in parentheses: -(10(2x+1)+56), so:
10(2x+1)+56
We multiply parentheses
20x+10+56
We add all the numbers together, and all the variables
20x+66
Back to the equation:
-(20x+66)
We get rid of parentheses
x^2+x-20x-66=0
We add all the numbers together, and all the variables
x^2-19x-66=0
a = 1; b = -19; c = -66;
Δ = b2-4ac
Δ = -192-4·1·(-66)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-25}{2*1}=\frac{-6}{2} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+25}{2*1}=\frac{44}{2} =22 $

See similar equations:

| s*5+23=118 | | 3x5^3x+1=18 | | 10x-(10+x^2)=0 | | 2m-(m+6)=4(m-3) | | 3+(x+1)=4-(4x-3) | | 14x-22+5=12x-8 | | 9/x=4 | | -27+8x=13-2 | | 3(x-6)+x=42 | | 4^x-3^{x+0.5}=3^{x-0.5}-2^{2x-1} | | 0.25(d-12=4 | | -67+46=43-15+40x+9x | | 15.8f-19.92-9.01=17.6+19.1f | | 15.8f–19.92–9.01=17.6+19.1f | | -t+12+15=-18+14t | | 3+12m=18+17m | | 17w=-20+19w | | 12.3z=11.8z-6.65 | | 12.3z=11.8z–6.65 | | -10t^2+25t-3=0 | | -20y=-10-18y | | -15-19g=-13g-6-5g | | -7n+17=-19-5n | | 4g+6=-8+2g | | 0.5x^2=1 | | -4v-9+9=-9v+5 | | 5f+8=7f | | 44+4=17x-41 | | 3(x+2)-(x+5)=0 | | 4r-2=5r-9 | | -5f-1=f-7 | | -9+5j=6j |

Equations solver categories