If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+1)=1275
We move all terms to the left:
x(x+1)-(1275)=0
We multiply parentheses
x^2+x-1275=0
a = 1; b = 1; c = -1275;
Δ = b2-4ac
Δ = 12-4·1·(-1275)
Δ = 5101
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5101}}{2*1}=\frac{-1-\sqrt{5101}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5101}}{2*1}=\frac{-1+\sqrt{5101}}{2} $
| 23=7r | | Y=8x³-2x²+3x-6 | | 5=-5t^2+t+4 | | 93-4x=85-2x | | 4x-7+3x-15+90=180 | | 82+62+x+12=180 | | 1/3q+2=9 | | 4p(12)-5=-98 | | 2(-6m-3)=3(m-1) | | w/5+15=25 | | -(x+4)-3.3x=-(2.3x+4) | | u/3+17=18 | | 4=-5t^2+5t+2 | | 2(p+6)=2p+16 | | X²-8x+36=0 | | 5x–4(6.25x–9)=2(5x–7) | | 3x^2+5x=(3x+1)(x-2) | | 6x-11+90+23=180 | | 6x+20+55+81=180 | | 2x-3+51+90=180 | | -4.9t^2+45t=0 | | (3)=−2x+6 | | -5.5x=1 | | 45x+135=x | | -(x/1.8)-5.14=-3.12 | | 8x+17+5x-6=180 | | 3-y=5-4y+5(2y) | | 4x²+16x=48 | | 6^x+5^x=13 | | (4x+16)(5x-11)=0 | | (5x+2)+88=180 | | (5/2)-2g=(5/2)g-3+g |