If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+1)=2162
We move all terms to the left:
x(x+1)-(2162)=0
We multiply parentheses
x^2+x-2162=0
a = 1; b = 1; c = -2162;
Δ = b2-4ac
Δ = 12-4·1·(-2162)
Δ = 8649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8649}=93$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-93}{2*1}=\frac{-94}{2} =-47 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+93}{2*1}=\frac{92}{2} =46 $
| 6(h−74)=66 | | n+-32=12 | | x=10/8 | | 10x+(-1)=-9(x+7) | | h/6+40=44 | | 2.37=0.58+x | | 0=x²+23x-108 | | y+32/8=6 | | 5x-10+3x-3=-3 | | p+1.40.5p=0.1 | | –7x–60=x^2+10x | | x²+23x-108=0 | | 3/28=q/42 | | 5x-10+3x-3=-8 | | .5a=24 | | 3=t/4−2 | | 3=v-78/4 | | x=-7/4 | | d/8+41=43 | | 2y+4=22.Y= | | 3/28=42/q | | /2x+10=7x-30 | | d/8+ 41=43 | | 3(y+6)=6y-6 | | x=-1+3/4 | | p+1.4=0.5p0.1 | | u+2u+6=180 | | 62=2(d+21) | | 7x+2(x-1)+20=90 | | 13=b/2+ 9 | | -9x-24=5(x-2) | | s+30+3s+30=180 |