If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+1)=33
We move all terms to the left:
x(x+1)-(33)=0
We multiply parentheses
x^2+x-33=0
a = 1; b = 1; c = -33;
Δ = b2-4ac
Δ = 12-4·1·(-33)
Δ = 133
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{133}}{2*1}=\frac{-1-\sqrt{133}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{133}}{2*1}=\frac{-1+\sqrt{133}}{2} $
| -7n+15=-8(-6+5n) | | 5p+7=-7(p-3) | | 4b=46 | | X^2-48x+468=0 | | 8x2−57x=−7 | | 4x+4/3=7x-32/2 | | 3n^2=81n | | (x-2)(X=5)=18 | | 2(x-1)=1-6x | | S^2+8s+4=0 | | 6m+2(m+7)=-14 | | x3-18=46 | | 4+6x=32x+4+20 | | 32x+4=4+6x | | 5x2-85=40 | | 2g^2+15=13g | | 3d-12=1 | | 6(4r-2)-1=8r+35 | | 3x2=192 | | 3b+7=13 | | 1/3x+4=3/2+3 | | 0.25b=6 | | 4x+10=7x=16 | | 7+4b=12-3b | | 50u^2+48u=0 | | z-10=-4z | | 2/3x+3/2=3/2x+2/3 | | -100q=-2q^2 | | 2/3=x/13= | | 2/3=x/13 | | -3t-8+7t=34t+9t-2 | | 10w-8w=4 |