If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+1)=63
We move all terms to the left:
x(x+1)-(63)=0
We multiply parentheses
x^2+x-63=0
a = 1; b = 1; c = -63;
Δ = b2-4ac
Δ = 12-4·1·(-63)
Δ = 253
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{253}}{2*1}=\frac{-1-\sqrt{253}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{253}}{2*1}=\frac{-1+\sqrt{253}}{2} $
| -11x+29=-15x-43 | | 2/9n+7=31 | | y=0.75(0)-1.5 | | 12(11x+1)=30(5x-2) | | 9n+1=7n+13 | | 210.5^2+x^2=421^2 | | -7(-2z+4)÷-12+1=6 | | 1+3n=6n+8n+7 | | f3+8=16 | | 5x^2-12x-5=-3x | | -7(-2z+4)÷-12+1=-6 | | 2(1.5x-4)=2(3x+2) | | -16x^2+60x+72=0 | | 6+54 b=109 b | | -8=3(v-2)-5v | | 9x-14=7x-36 | | -6k+1=2+7k | | (2x-10)(5x+15)=180 | | 8=6b÷3+2 | | -8p-5=-p+30 | | 81+57+2x+18=180 | | -2/5c=18 | | x-87=-6 | | 5-2(t+4)=3t+12 | | x+31=-145 | | 2*(0.4-0.8x)*(0.6-0.8x)=0 | | 156=96+12x | | 118=11+x | | 7*(x-4)+2=51 | | 7+5r=-21+3r | | 8=6b/3+2 | | 3=u/5-2 |