If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+1)=93
We move all terms to the left:
x(x+1)-(93)=0
We multiply parentheses
x^2+x-93=0
a = 1; b = 1; c = -93;
Δ = b2-4ac
Δ = 12-4·1·(-93)
Δ = 373
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{373}}{2*1}=\frac{-1-\sqrt{373}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{373}}{2*1}=\frac{-1+\sqrt{373}}{2} $
| d−6/2=1 | | 9x2=1296 | | x5=6x+13 | | 12=3(v+16) | | 45c-73=28 | | y=34^2+5 | | 19-2n=15 | | 5x-67=7 | | 11g-8=135 | | 4=12−j | | x5=6x-13 | | 10n-12-4n+10=70 | | (2x+5)x-348=0 | | (0,25x-0,75)+(0,4x-1,6)-1/3=0 | | 3x/2=x+5 | | (2x+5)x=348 | | X^2-72=-6x | | 1-3(-8m-7)=7m-8 | | 16=4/5v | | 2y-8.3=3y | | 2x^2+13x-44=0 | | 5x+3=10+12x | | (x-4)(x+1)-(x+7)(x+3)=-7x+17 | | 14x+9+11x-13=146 | | I0n-12-4n+10=70 | | 8/9x+10=90 | | -38-8x=38-12x | | 16−2t=t+9+4tt=t= | | .5(7x-3)=19 | | F=(6x^-2)/(3x^2) | | x-9+1=12 | | 6d+2d-6d+4d=18 |