If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+15)=25
We move all terms to the left:
x(x+15)-(25)=0
We multiply parentheses
x^2+15x-25=0
a = 1; b = 15; c = -25;
Δ = b2-4ac
Δ = 152-4·1·(-25)
Δ = 325
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{325}=\sqrt{25*13}=\sqrt{25}*\sqrt{13}=5\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{13}}{2*1}=\frac{-15-5\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{13}}{2*1}=\frac{-15+5\sqrt{13}}{2} $
| x-(1+15)=25 | | x=3x-8x(x^2+1)9x | | x=3x-8x(x^2+1) | | 2x+9(0)=24 | | 64+8y=-16 | | X+32=45;x= | | 12+3v=7v | | 10y=5y+25 | | 3(2y+5=33 | | 34.9+26.1=p | | 4x•6=96 | | 6t^2-2t=4 | | 20x+10(52-x)=700 | | q^2-4q-45=0 | | 4(z+12)=80 | | 75+59+6x+4=180 | | 100=10(m-86) | | 6(g+4)=84 | | 20y−-2y−6y+-14y=-10 | | 40+1/9x=x | | X+(x+2)+(x+4)=69 | | 25+135+x+9=180 | | -3x-32=34-5x | | m/8+21=9 | | (2x+5)2=5x-20 | | m+21/m=9 | | 19k–-18k–2k+-14k+-17k=16 | | 7(2m+6)+8=106 | | 2(1)+4x=14 | | 4x-2=10+10 | | k-7/0.4=85 | | 14b-8b-5b+2b=18 |