x(x+2)+(x+4)+(x+6)=4x+12=212

Simple and best practice solution for x(x+2)+(x+4)+(x+6)=4x+12=212 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+2)+(x+4)+(x+6)=4x+12=212 equation:



x(x+2)+(x+4)+(x+6)=4x+12=212
We move all terms to the left:
x(x+2)+(x+4)+(x+6)-(4x+12)=0
We multiply parentheses
x^2+2x+(x+4)+(x+6)-(4x+12)=0
We get rid of parentheses
x^2+2x+x+x-4x+4+6-12=0
We add all the numbers together, and all the variables
x^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $

See similar equations:

| 5w-17=2w+4 | | 3(x+4)=7x-20 | | x/10+1=-1 | | 8j-6=4j+26 | | 8=161-w | | 28=-9x+8x | | 20t+1=50t | | 3(2f+5)=39 | | 16–3p=2/3p+5 | | -w+67=248 | | b-5+3b=20 | | 21=p+14 | | $4f-$2.50f=$39 | | -x–3=-9 | | -10x+11x+5=9+(-5) | | t/4-5=6 | | 9=2+7(x-8) | | -4x+8=-5x+1 | | 103-v=240 | | 3-(x-1)=1 | | -x+9=10. | | -8(s+3)=-12 | | (3/4)x+4=20 | | -3w-6w-29=3 | | 72h-9h^2=0 | | 9x+184=7x+154 | | (2x)/5-1=5 | | -3(3d+15)-(10+d)=35 | | 2n+10=32 | | 1.31*32=y | | -x^2–6xx=-6 | | 2(x-2)(x+2)=40 |

Equations solver categories