If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+20)=210
We move all terms to the left:
x(x+20)-(210)=0
We multiply parentheses
x^2+20x-210=0
a = 1; b = 20; c = -210;
Δ = b2-4ac
Δ = 202-4·1·(-210)
Δ = 1240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1240}=\sqrt{4*310}=\sqrt{4}*\sqrt{310}=2\sqrt{310}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{310}}{2*1}=\frac{-20-2\sqrt{310}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{310}}{2*1}=\frac{-20+2\sqrt{310}}{2} $
| 32x=25x+2 | | 2x+12+3=3x-6+1 | | -12+22=-5(x+8 | | 10v-8=108 | | p÷12=-8 | | -9+25a^2=27 | | 6u+–13u=14 | | -3x2=-5x+4 | | 2/5*4=w | | -3x+5+6x=8 | | -3y+17=-9y+49 | | 4(2x+5)=-32+20 | | h=2+2/7 | | 4x+7x=−22 | | 2(2x-1)-3x=6 | | 3y-116=0 | | 6c-8-8-2c=-16 | | -2(3x-7)+7=3x+13 | | 2(x-5)+10=16+4x | | 11x-4=64 | | +(7x-8)(10x-14)+(7x-8)=180 | | C=2 | | 1=0.1x-0.5-27 | | (w-2)=2w^2+2w+12 | | -6(n+5)=-66 | | 9/10m=75+7/10m | | 180=x+(2/3x-15) | | -3d+10=3 | | -14=-8x+5(x+2) | | 4s+1=2(2s-5)+1 | | 1x+(-3)=2x+7 | | -4(x-7)=-2(2x-3) |