If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+20)=2x-20
We move all terms to the left:
x(x+20)-(2x-20)=0
We multiply parentheses
x^2+20x-(2x-20)=0
We get rid of parentheses
x^2+20x-2x+20=0
We add all the numbers together, and all the variables
x^2+18x+20=0
a = 1; b = 18; c = +20;
Δ = b2-4ac
Δ = 182-4·1·20
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{61}}{2*1}=\frac{-18-2\sqrt{61}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{61}}{2*1}=\frac{-18+2\sqrt{61}}{2} $
| 4y =36 | | 10x+7=-13 | | 40=(2w+2)w | | 1.4x+2.5(2)=26 | | (12x-9)-(5x-1)=(7x-5)-(4x-9) | | w(2w+1)=120 | | 6x=3x+7x^2 | | 6n-2-7n=5-n+4 | | 24/26=2/x | | 3b+19=180 | | 7h+1(h-1)=8h-1 | | t-7+7t=3(4t-5) | | 180=7z+5 | | {x}^{2}-4x+23=0 | | 5x-85=360 | | y+20=56 | | 50÷m+8–8=1050÷m+8–8=10 | | (1+r)^4=1.125 | | 50÷m+8–8=10 | | 4x+5=85-4x;x | | 1.5x+2.25x=10x+40 | | x+1/4+x-2/3-x-3/2=1 | | 4K-81/2=k-11/2 | | 11/2x+21/4x=5/2x+5/8 | | 1/5(2-x/2)-3/10(1-x/2)=17/20 | | 7m+3m=90 | | 42=-b | | 4–4j=-8 | | 1.31+3.3x=x+4.3 | | 3(x+1)+3(2x+5)/9=x+2 | | (5x+80-3.5x)+(2x+80-3.5x)=80 | | 3(x-10)=14 |