x(x+25)=1350

Simple and best practice solution for x(x+25)=1350 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+25)=1350 equation:



x(x+25)=1350
We move all terms to the left:
x(x+25)-(1350)=0
We multiply parentheses
x^2+25x-1350=0
a = 1; b = 25; c = -1350;
Δ = b2-4ac
Δ = 252-4·1·(-1350)
Δ = 6025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6025}=\sqrt{25*241}=\sqrt{25}*\sqrt{241}=5\sqrt{241}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-5\sqrt{241}}{2*1}=\frac{-25-5\sqrt{241}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+5\sqrt{241}}{2*1}=\frac{-25+5\sqrt{241}}{2} $

See similar equations:

| 6q+1=25 | | 1/8(p+24=9 | | f(3)=776 | | 5y=(y+3)-(y-6) | | 4.1x-11.34=6.7 | | (x+35)/(x)+(x-2)/(3)=1 | | 2x^2=16−4x | | 2x+45x=180 | | 7s+11(745-s)=s | | -22=1-3x-5 | | -17-2x=3x+18 | | x^2+25x=1350 | | 250x=1800 | | 8x+5=36^2 | | -261/3+x=10 | | 8x-2=(4+3x) | | 120-(750*x)=0 | | x/x+5=4/9 | | 24f−-84=876 | | 2.5x-17.85=3.4 | | -20=4y-8 | | 4x=x=-x | | 3y/4-2=10 | | (3-2i)-(-3+5i)=0 | | 24=-2x+6x | | -22=2/3n | | 5x(2)-27=4x(2)-6x | | 7y-7=9y+11 | | 120/x=5/4 | | 7(x+2)=3(2x-5) | | 41/5p=6 | | x^2+4x+4=100x^2+20x+1 |

Equations solver categories