If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+32)=180
We move all terms to the left:
x(x+32)-(180)=0
We multiply parentheses
x^2+32x-180=0
a = 1; b = 32; c = -180;
Δ = b2-4ac
Δ = 322-4·1·(-180)
Δ = 1744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1744}=\sqrt{16*109}=\sqrt{16}*\sqrt{109}=4\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{109}}{2*1}=\frac{-32-4\sqrt{109}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{109}}{2*1}=\frac{-32+4\sqrt{109}}{2} $
| x3−2x−4=0 | | -23+5y=15y+10 | | −0.4=3g−0.9 | | -7w+9=6(w+8) | | 1.2x+3.7=2.2x+4.5 | | .50(x+5)=10 | | 28=(2x)+(2x)+8 | | 1234567890=456789x | | 0.3(2x-3)=3(x-1)-0.3 | | 4x-6x-3x4=1+8+6 | | -7z+1=43 | | 1.6u=-19.2 | | 49(5x+4)=180 | | 60=2.4x | | 14-5y=18+5y | | 1/3x+7xx= | | 5(3x-1)+7=32 | | x-5+7x+4-17x=3-2x+4+17+x | | 4(6x-7)=2x+25 | | a+12-3a=36 | | 5c-27=-42 | | 5z2-17z+14=0 | | 93=-16t^2+80t+10 | | 10w2-7w-6=0 | | 2x+1/x^2+1=7/12 | | 4(2x-3)=x^2 | | 11x-3x-14x=-64-12 | | 11x-46-6x=54 | | 7+x^2=16 | | 10w2=7w+6 | | 2=k/19-4 | | 3.5+j=5 |