x(x+4)3=4(x+19.5)

Simple and best practice solution for x(x+4)3=4(x+19.5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+4)3=4(x+19.5) equation:


Simplifying
x(x + 4) * 3 = 4(x + 19.5)

Reorder the terms:
x(4 + x) * 3 = 4(x + 19.5)

Reorder the terms for easier multiplication:
3x(4 + x) = 4(x + 19.5)
(4 * 3x + x * 3x) = 4(x + 19.5)
(12x + 3x2) = 4(x + 19.5)

Reorder the terms:
12x + 3x2 = 4(19.5 + x)
12x + 3x2 = (19.5 * 4 + x * 4)
12x + 3x2 = (78 + 4x)

Solving
12x + 3x2 = 78 + 4x

Solving for variable 'x'.

Reorder the terms:
-78 + 12x + -4x + 3x2 = 78 + 4x + -78 + -4x

Combine like terms: 12x + -4x = 8x
-78 + 8x + 3x2 = 78 + 4x + -78 + -4x

Reorder the terms:
-78 + 8x + 3x2 = 78 + -78 + 4x + -4x

Combine like terms: 78 + -78 = 0
-78 + 8x + 3x2 = 0 + 4x + -4x
-78 + 8x + 3x2 = 4x + -4x

Combine like terms: 4x + -4x = 0
-78 + 8x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-26 + 2.666666667x + x2 = 0

Move the constant term to the right:

Add '26' to each side of the equation.
-26 + 2.666666667x + 26 + x2 = 0 + 26

Reorder the terms:
-26 + 26 + 2.666666667x + x2 = 0 + 26

Combine like terms: -26 + 26 = 0
0 + 2.666666667x + x2 = 0 + 26
2.666666667x + x2 = 0 + 26

Combine like terms: 0 + 26 = 26
2.666666667x + x2 = 26

The x term is 2.666666667x.  Take half its coefficient (1.333333334).
Square it (1.777777780) and add it to both sides.

Add '1.777777780' to each side of the equation.
2.666666667x + 1.777777780 + x2 = 26 + 1.777777780

Reorder the terms:
1.777777780 + 2.666666667x + x2 = 26 + 1.777777780

Combine like terms: 26 + 1.777777780 = 27.77777778
1.777777780 + 2.666666667x + x2 = 27.77777778

Factor a perfect square on the left side:
(x + 1.333333334)(x + 1.333333334) = 27.77777778

Calculate the square root of the right side: 5.270462767

Break this problem into two subproblems by setting 
(x + 1.333333334) equal to 5.270462767 and -5.270462767.

Subproblem 1

x + 1.333333334 = 5.270462767 Simplifying x + 1.333333334 = 5.270462767 Reorder the terms: 1.333333334 + x = 5.270462767 Solving 1.333333334 + x = 5.270462767 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + x = 5.270462767 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + x = 5.270462767 + -1.333333334 x = 5.270462767 + -1.333333334 Combine like terms: 5.270462767 + -1.333333334 = 3.937129433 x = 3.937129433 Simplifying x = 3.937129433

Subproblem 2

x + 1.333333334 = -5.270462767 Simplifying x + 1.333333334 = -5.270462767 Reorder the terms: 1.333333334 + x = -5.270462767 Solving 1.333333334 + x = -5.270462767 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + x = -5.270462767 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + x = -5.270462767 + -1.333333334 x = -5.270462767 + -1.333333334 Combine like terms: -5.270462767 + -1.333333334 = -6.603796101 x = -6.603796101 Simplifying x = -6.603796101

Solution

The solution to the problem is based on the solutions from the subproblems. x = {3.937129433, -6.603796101}

See similar equations:

| D-7=-36 | | 3m-5n=11equation(1) | | 6415= | | 3a-9=5+a | | 8y-7x+4=0 | | 4(y+3)-(3y-4)=5-(2y+4) | | 2x^2+40x-345=0 | | p^2+13p=-42 | | n^2=4-3n | | 3p-10=2(p-2) | | 45-24= | | A=5/3 | | 3n+70=-50 | | .3+.8b=0.45 | | 5x-19=180 | | 6a-3a+3a=10-2+7 | | r^2=2r+8 | | 5/9=12x | | 0.3(10+4)=4x | | 4w-19=-3(w+4) | | 31+8b=-23+11b | | 5/4x=-3/7 | | -54=67-18 | | 13u-11u=10 | | 7x^2-7x=-1 | | 9b=3 | | 5/4x=-3/4 | | 3h+4+2h=9+4+2h | | x*36=27 | | x+y-(9-4x)=0 | | x^2+11x=23 | | X+X+2+3=159 |

Equations solver categories