If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+5)=62
We move all terms to the left:
x(x+5)-(62)=0
We multiply parentheses
x^2+5x-62=0
a = 1; b = 5; c = -62;
Δ = b2-4ac
Δ = 52-4·1·(-62)
Δ = 273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{273}}{2*1}=\frac{-5-\sqrt{273}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{273}}{2*1}=\frac{-5+\sqrt{273}}{2} $
| t+1/3=1/2 | | -10-9w=-7w+8 | | -10-t=8+t | | -9b=-3-8b | | -4(7+6r)-(1+4r)=55 | | (t-9)^2=21 | | 3(3x+3)-9=2(5x-22)+45. | | -u=-6-3u | | 4x×23=34 | | r^2+15=61 | | -9f+8=-10f | | X/4-(x-4)/3=5/3 | | 2/1(3-x)-1=4 | | x^2-8x=-15, | | 2x-11+2x-4=13 | | 15z−5=4z | | 8x+2/7x-3=-7/5 | | 20v=680 | | -0,4x+9=0 | | 12t=36−9t | | 10y+1=2y+4 | | (x+4)(2x-7)=90 | | X/2+x/3=x-9 | | x/8-4=0и-0,4x+9=0 | | -3+1/2x=-2 | | 2q-6=20 | | 5x-18=2x-8 | | 14x^2+31x+15=0* | | 6x+42=70-8x | | -3+1/2w=-2 | | 42-2x=x+36 | | q-1/3=-2/3 |