x(x+6)/(2x+6)=40/3

Simple and best practice solution for x(x+6)/(2x+6)=40/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+6)/(2x+6)=40/3 equation:



x(x+6)/(2x+6)=40/3
We move all terms to the left:
x(x+6)/(2x+6)-(40/3)=0
Domain of the equation: (2x+6)!=0
We move all terms containing x to the left, all other terms to the right
2x!=-6
x!=-6/2
x!=-3
x∈R
We add all the numbers together, and all the variables
x(x+6)/(2x+6)-(+40/3)=0
We get rid of parentheses
x(x+6)/(2x+6)-40/3=0
We calculate fractions
(3x^2+18x)/(6x+18)+(-80x-240)/(6x+18)=0
We multiply all the terms by the denominator
(3x^2+18x)+(-80x-240)=0
We get rid of parentheses
3x^2+18x-80x-240=0
We add all the numbers together, and all the variables
3x^2-62x-240=0
a = 3; b = -62; c = -240;
Δ = b2-4ac
Δ = -622-4·3·(-240)
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{6724}=82$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-62)-82}{2*3}=\frac{-20}{6} =-3+1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-62)+82}{2*3}=\frac{144}{6} =24 $

See similar equations:

| 412=12s+28 | | 7(3y-2)=23 | | -1876=6(17n-6)+5 | | 6(1y-4)=36 | | 2(5x+4)=-5(4x-5) | | 4(8y+56)=96 | | 24n/24=-13/24 | | 24n=-13 | | t^2+2t-78=0 | | 10x+2=-15x+9-2x | | 2y+24=8y | | 2x-5/3=3x-10 | | 2.50m+4=21.50 | | b+27-19=12 | | 4(8y+56)=98 | | 3(8x+16)=120 | | 4(5y+25)=40 | | 4(5y+10)=80 | | 3(7y+35)=42 | | 3(6p^2+7p-5)=0 | | 20-8n=15n= | | 2(3y+6)=30 | | n+4=19-2n= | | 4(7y+35)=56 | | 13k-32=8k+8 | | 2/3x+x=20 | | 2a-14-3a=5 | | 6m^+23m+15=0 | | -4t+-36+6t=3t | | (2c-1)^2=25 | | 11z=8 | | 4(3y+4)=10 |

Equations solver categories